Derivation of Boltzman distribution

With Partition function

أحصائية بولتزمان BOLTZMANN STATISTICS

توزيع التوازن لنضام N من الجسيمات المتمايزه غير المتفاعله

تخضع للمحددات
$$lacksquare$$
 تخضع للمحددات $\sum_{j=1}^n N_j arepsilon_j = N$ and $\sum_{j=1}^n N_j arepsilon_j = U$

j=1 عدد الطرق التي تتوزع بها الجسيمات N_1 من العدد الكلي N_1 لتكون في المستوى

$$\left(\begin{array}{c} N\\ N_1 \end{array}\right) = \frac{N!}{N_1!(N-N_1)!}$$

عدد الطرق التي تتوزع بها الجسيمات N_1 من العدد الكلي N_1 أذا كان الأنحلال في مستويات الطاقه g_1 لكل جسيم هنالك أمكانيه $(g_1)^{N_1}$

$$\begin{pmatrix} N \\ N_1 \end{pmatrix} = \frac{N!g_1^{N_1}}{N_1!(N-N_1)!}$$

For j=2 \blacktriangleright same situation

except that there are only $\left(N-N_{1}
ight)$ particles remaining to deal with

$$\frac{(N-N_1)!g_2^{N_2}}{N_2!(N-N_1-N_2)!}$$

Continuing process

$$\omega_{\rm B}(N_1, N_2, N_n) = \frac{N!g_1^{N_1}}{N_1!(N - N_1)!} \times \frac{(N - N_1)!g_2^{N_2}}{N_2!(N - N_1 - N_2)!} \times \frac{(N - N_1 - N_2)!g_3^{N_3}}{N_3!(N - N_1 - N_2 - N_3)!} \cdots$$

$$= N! \frac{g_1^{N_1}g_2^{N_2}g_3^{N_3}\cdots}{N_1!N_2!N_3!\cdots} = N! \prod_{j=1}^n \frac{g_j^{N_j}}{N_j!}$$

مضاعفات لاكرانج LAGRANGE MULTIPLIERS

Maximization of f(x,y) subject to constraint $\phi(x,y) = \mathrm{constant}$

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy = 0$$

$$d\phi = \frac{\partial \phi}{\partial x} dx + \frac{\partial \phi}{\partial y} dy = 0$$

$$\frac{\partial f/\partial x}{\partial \phi/\partial x} = \frac{\partial f/\partial y}{\partial \phi/\partial y}$$

If dx and dy were independent $\rightleftharpoons \frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0$ $d\phi = \frac{\partial \phi}{\partial x} dx + \frac{\partial \phi}{\partial y} dy = 0$ $\frac{\partial f/\partial x}{\partial \phi/\partial x} = \frac{\partial f/\partial y}{\partial \phi/\partial y}$ Or constant ratio →×

For constant ratio

$$\frac{\partial f}{\partial x} + \alpha \frac{\partial \phi}{\partial x} = 0 \quad \text{and} \quad \frac{\partial f}{\partial y} + \alpha \frac{\partial \phi}{\partial y} = 0$$

expressions we would get if we attempt to maximize $f + \alpha \phi$ without constraint For n variables and two constraint relations

$$\frac{\partial f}{\partial x_i} + \alpha \frac{\partial \phi}{\partial x_i} + \beta \frac{\partial \psi}{\partial x_i} = 0, \qquad i = 1, 2, 3 \cdots n$$

A step further to investigate the tangents of the slope function. Second Derivative Function is... f''(x) is... d^2y/dx^2 is...

A step further to investigate the tangents of the slope function. Second Derivative Function is... f''(x) is... d^2y/dx^2 is...

Task \blacktriangleright find maximum of ω_{B} with respect to all N that satisfy constraints

In practice \blacktriangleright more convenient to maximize $\ln \omega$ than w itself

$$\ln \omega = \ln N! + \sum_{i=1}^{n} N_i \ln g_i - \sum_{i=1}^{n} \ln N_i!$$

We are concerned with $N_i \gg 1$ — use Stirling's asymptotic expansion

$$\ln N! \simeq N \ln N - N + \ln \sqrt{2\pi N} + \cdots$$

Neglecting relatively small last term in (41)

$$\ln \omega = \ln N! + \sum_{i=1}^{n} N_i \ln g_i - \sum_{i=1}^{n} N_i \ln N_i + \sum_{i=1}^{n} N_i$$

Search for maximum of target function using Lagrange multipliers \neg

$$\frac{\partial}{\partial N_j} \left[\sum_i N_i \ln g_i - \sum_i N_i \ln N_i + \sum_i N_i \right] + \alpha \frac{\partial}{\partial N_j} \left(\sum_i N_i \right) + \beta \frac{\partial}{\partial N_j} \left(\sum_i N_i \varepsilon_i \right) = 0$$

In working out the derivatives lacktriangle only contribution comes from terms with $j\,=\,i$

$$\ln g_j - \ln N_j - \underbrace{\frac{N_j}{N_j} + 1}_{=0} + \alpha + \beta \varepsilon_j = 0$$

For every energy level

of particles per quantum state for equilibrium of the system

$$\frac{N_j}{g_j} = e^{\alpha + \beta \varepsilon_j} = f_j(\varepsilon_j)$$

Constants lpha and eta are related to physical properties of the system

Multiply by N_j and sum over j

$$\sum_{j} N_{j} \ln g_{j} - \sum_{j} N_{j} \ln N_{j} + \alpha \sum_{j} N_{j} + \beta \sum_{j} N_{j} \varepsilon_{j} = 0$$
$$\sum_{j} N_{j} \ln g_{j} - \sum_{j} N_{j} \ln N_{j} = -\alpha N - \beta U$$

Substituting $\qquad \qquad \ln \omega = \ln N! + N - \alpha N - \beta U$

simplifying $ightharpoonup \ln \omega = C - \beta U$

Identification with Boltzmann entropy yields $ightharpoonup S = k \ln \omega = S_0 - k \beta U$

From classical theory
$$\blacktriangleright \quad dS = \frac{dU}{dT} + \frac{PdV}{T} = \left(\frac{\partial S}{\partial U}\right)_V dU + \left(\frac{\partial S}{\partial V}\right)_U dV$$

giving
$$lacktriangledown\left(rac{\partial S}{\partial U}
ight)_V = rac{1}{T}$$

From (47)
$$\blacktriangleright$$
 $\left(\frac{\partial S}{\partial U}\right)_V = -k\beta$

Constancy of V is ightharpoonup because $\epsilon_j \propto V^{-2/3}$

PARTITION FUNCTION دالة التجزئه

Substituting
$$lacktriangleq N_j = g_j e^{lpha} e^{-arepsilon_j/kT}$$

lpha can be easily found from

$$N = \sum_{j} N_{j} = e^{\alpha} \sum_{j} g_{j} e^{-\varepsilon_{j}/kT}$$

$$N$$

$$e^{\alpha} = \frac{N}{\sum_{j} g_{j} e^{-\varepsilon_{j}/kT}}$$

Boltzmann distribution becomes
$$= f_j = rac{N_j}{g_j} = rac{N \ e^{-arepsilon_j/kT}}{\sum_j g_j e^{-arepsilon_j/kT}}$$

partition function (German Zustandssumme)

$$Z \equiv \sum_{j=1}^{n} g_j e^{-\epsilon_j/kT}$$